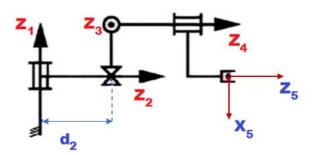
AUT.841: Robot Manipulators: Modeling, Control and Programming Exam: (18.10.2022) Prof. Jose L. Martinez Lastra


Name: _

Student number: _

Return THIS SHEETS together with your answer sheets

Question 1 (35%)

Obtain the modified Denavit-Hartenberg table for the next RPRR manipulator. In a picture show clearly the frame assignment and the DH parameters for each of the links

Question 2 (15%)

Draw the manipulator which generates the next modified Denavit-Hartenberg table. Draw as well the frame assigned to each of the links

++	+	+	+	+
j	theta	d I	a	alpha
++	+	+	+	+
1	q1	0.4	01	01
2	q2	01	0.75	01
3	q3	01	0.51	01
++	+	+	+	+

Question 3 (20%)

Obtain Jacobian matrix for the linear velocities (J_{X_P}) of a manipulator having an homogenous transformation matrix ${}^{0}T_4$, where frame {4} is the last link frame and L_1, L_2, L_3, L_4 are constants

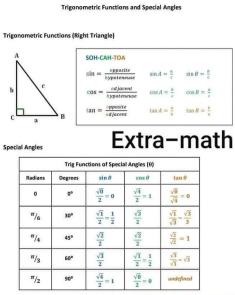
$${}^{0}T_{4} = \begin{bmatrix} c_{124} & s_{124} & 0 & L_{3}c_{12} + L_{2}c_{1} \\ s_{124} & -c_{124} & 0 & L_{3}s_{12} + L_{2}s_{1} \\ 0 & 0 & -1 & -L_{4} + q_{3} + L_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Question 4 (20%)

In the exercises session a **numerical** algorithm to solve the inverse kinematics of an arbitrary manipulator was reviewed. Explain how it works. Provide the pseudo-code of the algorithm

Question 5 (10%)

A manipulator is defined by the next modified Denavit-Hartenberg table.


++-	+	+	+	++
j	theta	d	a	alpha
++-	+	+	+	++
1	q1	0.4	01	0
2	q2	01	0.75	0
3	q3	01	0.5	0
++-	+	+		+

By using the Robotics Toolbox, provide the Matlab code to achieve the next:

- Define the serial manipulator object
- Compute the forward kinematics of the manipulator for an arbitrary input
- The command to render the manipulator
- The code to compute the inverse kinematics of the manipulator for an arbitrary target

Support material

The next material is given as support. Use it if you need it to solve any of the questions

Note the patterns in the above table: In the sine column, the numbers 0 to 4 occur in sequence under the radical! The cosine column is the sine column reversed. Tangent = sine + cosine.

$sin(x \pm y)$	$= \sin x \cos x$	$y \pm \cos x \sin y$
$\cos(x\pm y)$	$= \cos x \cos x$	$y \mp \sin x \sin y$,
$2 \sin x \sin y$	$= \cos(x-y)$	$-\cos(x+y)$,
2 cos x cos y	$= \cos(x-y)$	$+ \cos(x+y)$,
$2 \sin x \cos y$	$= \sin(x-y)$	+ sin(x+y).